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Abstract

Bayesian estimators for the parameters of the finite "
state Markov renewal process are developed, both for the

waiting time distributions and the transition probabilities.

KEY WORDS
Markov, Renewal process, Bayesian, Estimation, Waiting times, ‘

Transition probabilities ﬂ
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1. INTRODUCTION

1
T e p— _._:J

.~ This paper develops Bayesian statistical estimation

————

procedures for the finite state Markov renewal process. The
general case is treated where uncertainty exists about both '
the waiting time distributions and the transition probabilities.

This work extends the Bavesian results of Martin (1967), who

- e ey -
L Wl

only considers the Markov chain case, and Brock (19715} who

Py

assumes that the waiting time distributions are known. Moore

e

and Pyke/?l968)\deal onlv with classical estimation methods.

The sampling schemes considered are either/}I) to observe n

transitions and their associated waiting times, or, more generally, - {
<;—%2%4to observe the process for some time T, where T is not

necessarily a transition time. X
2. THE MARKOV RENEWAL PROCESS MODEL

The Markov renewal process is a convenient and workable
generalization of both a Markov process and a remewal process,
incorporating the essential features of each. It is closely
related to the semi-Markov process independently investigated bty
Lévy [1954], Smith [1954] and Takhcs [1954]. Essentially, a finite
state semi-Markov process is a stochastic process modelling
moves among a finite number of states with the successive states
visited forming a Markov chain and the length of stay in a given

state being a random variable, the distribution function of which

may depend on this (origin) state as well as on the one to be
visited next. The finite state semi-Markov process can then be

thought of as a Markov chain for which the time scale has been




randomly transformed.

As noted by Pyke [196la] the semi-Markov process is equiv-
alent to the Markov renewal process which records at each time
t the number of times an entity has visited each of the possible
states up to time t, if the entity moves from state to state
according to a Markov chain, and if the time required for each
successive move is a random variable whose distribution function
may depend on the two states between which the move is being
made. An early application of the semi-Markov process was pur-
sued by Cane [1959]. 1Its application to the social science
phenomena of social mobility and migration is outlined by Ginsberg
(1971, 1972a,b] and it is reviewed briefly by Bartholomew [1973].
Statistical inference questlions about the transition probabili-
ties are considered by Moore and Pyke [1968]. Building on the
work of Martin [1967], Brock [1971] examines a Bayesian pro-
cedure for inference about the transition probabilities.

We shall deal with a finite state space, labelled

S ={1l,2,...,8}, and we let Q,.(t) denote the probability

13
that after making a transition into state 1, the process next
makes a transition into state J, in an amount of time less
than or equal to t. Note explicitly that the Markov renewal
mecdel allows for the possibility of transitions from state 1
to state 1. Such transitions may or may not have substantive
meaning in any partlicular application. For example, in migra-
tion studies a move within a particular geographic region
(state 1) might signal a transition. On the other hand, in
reliability studlies the states usually reflect the operating

status of a system, and a "within state" transition may have no
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physical meaning. 1In this later case Qii(t) = 0, But, in

general, we must have Qi (¢) 20, 1, =1,...,8; t 2 0. Let

J

s
P1J=Qij(w) = %iﬂ Qij(t) and note that 351 P1J=l, i=1,...,s.
>
Ifr PiJ 0, let
Q,.(t)
F, (t) = ==l (1)
1 P
1]

(If Pij =0, let Fij(t) be arbitrary.)
With thls notation Pij represants the probabillty that the

next transition will be into state J, given that the preccess
has just entered state 1, and Fij(t) represents the conditional
probabllity that a transition will take place within an amount

of time ¢t, given that the process has just entered 3+ and will
next enter Jj. When 1 1is entered, the next state 1s chosen
according to the transition probabilities Pij; then given that
the state chosen is Jj, the time until transition has a distri-

bution F,,(+). These quantities P and F, (t) are estimable

1] 13 J
from data through the transition fredquencies and cbserved wait-
ing times between the various transitions. We begin the estima-

tion process in the next section.
3. THE LIKELIHOOD FUNCTION

If the Markov renewal process is observed through time T,
during which n transitions take place, the data will have the

form

VX W)

(XOlTlixln--O,Tn'anw) =(x01t1’xll"':tn n
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where Xo is the state initially occupied, X, 1is the state

i
occupied after the ith transition, and T, 1is the waiting

)St

time between the (i-1 and ith transition. The likeli-

hood function is then proportional to
n

L= n q () 1l -
i=1 *j-10%; * j

fl ~0

1 an'j (w) ’

where q*j(t) is the probabllity density function corres-

ponding to Q,,(t) and

1J

Using equation (1), L can be rewritten as

n n s
L = n f (t.) mn P - Z F (W)P \ ,
[i=1 %1% 1:} Ll "i-l”‘i] [ 5E1 Xqd xS

where fij(t) is the probability density function corresponding
to Fij(t). This 1s the same as the likelihood function derived

by Moore and Pyke (1968).

In most practical applications there will not be enough
data to adequately estimate the waiting time distribution func-
tions F directly, with no restrictions placed on F, Thus it
will not usually be feasible to estimate F through the empir-
ical distribution function. Instead it will be necessary to
restrict the class of distribution functions to some general

parametric family and then estimate the indexing parameters of
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this family. It will also be true that in most practical
applications F will be absolutely continuous. We there-
fore assume that F 1is a member of some parametric family
of continuous distributions, indexed by the parameter vector

8
9 . We will then write as F,.. the distribution function of

1J
the waiting times between transitions from state i to state
8
j, with fij denoting the corresponding density function.
Then letting n_, denote the number of observed transitions

from state r to state u, L can be further rewritten as

] 8
L=L,L - ] {; F. (w)]| L_P , (2)
2R 51 % *a ] B *n j
where
n
S rue
L, = T T£2 ey

8 ru=l k=1

with tru(k) being the observed waiting time between the

(k-l)sc and kth transition from state r to state u, and

s n.,
L = n P .
R r,u=1 ru

Thus the sufficient statistic for this model is a vector
Z = (W, E(l),z(z)), where Z(l) denotes the vector of observed
waiting times, tru(k)’ between pairs of states, and Z(E)

denotes the vector of transition counts n_,-

m
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6
4. THE FORM OF BAYES ESTIMATORS

We consider a Bayesian treatment of the estimation problem.
This 1s desirable because of the flexibility of the Bayesian
approach in incorporating varying amounts of prior informatlion and
its success in handling the problem of limited amounts of relevant
sampling data.

We now derive Bayes estimators of ? and 3 using squared

error loss. Thus we require the mean of the posterior distribu-

ticn of P and 6. Let the prior joint density cf P and 8

be denoted by 7. Then the Bayes estimator of P 1is

~

JBL"dFde
E(P|z) = — (2
~ - [L n dEde -

The form of the Bayes estimator will simplify substantially
if we assume prior independence of P and 6, i.e., that — canr

be written in the form

m= a(P)em (o).

By using equation (2) we can rewrite the normalizing constant,
L 7dpde, as follows:

First, to simplify notation, let

ré w) = Fy and P = P
x5 M7 F x,d - F3
Then
[L = apde =
S 8 ‘
ILQLEN(E)n(Q)dEdQ - JZIILQFJL~Pjﬂ(E)ﬁ(Q)dEQQ r
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— S 3
DLBT(Q)d(ﬂ [LE’T(E)d{’]-Z DLG‘?TT 5) ]DL T(P)dP] (4
< J:l MY -
imilarly,
[ 2L -ap qe =
r S - 5
4 3y -~ 5 2 \~ - — = 4
[f Ly T(8)de Lf ELE‘(E)QE}JLU L?FJT( ,ag_[ fgug PJ..<13):113]. ()

Tc cbtaln the Bayes estimator of 9 we need to ccmpute the

posterior expectation,

t
=3
[oN
[ide] .
[OR Ey]
i g2,
Oh

The numeratcr of equation (6) can te rewritten as

[5LnéPde =

~

-
[}QLSv(g)dg ILP"(?)d?J - ll{eL P m(g)de t{ pP .7 (2) él' o7
e C 3

Note that under the assumpticn of independent prior distributicons
for P

and 8 the calculatlion of Bayes estimates involves separate

evaluations of integrals with respect to 8 and integrals with

rescect toE} Also note the substantial simplication that occurs

when the terminal time T happens tc be a transition time, i.e.,
when w=0. In this case the Bayes estimators are just

N~
—
[Bao)
&
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e
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IQLBN(Q)dQ
Jiym(9)as8

In the general case where w>0 the Bayes estimators
taxe a form adjusted away frcm P*¥ and ¢%¥. Specifically,

using equations (4) and (5), we can write the Bayes estimator

B as
S ~
p* - T a,E(pp [2'%))
5 = =10 C (2
- S 3 ~
1 - Z a,B,
J-._.l (S
vnere
crmB (1)
a, = E(FI|2 )
3 =513
and
g, = E{(P, |2 .
J (Fyl27H

The Bayes estimator 8 can be written using eguations (4) and

(7) as

s, E(erd[7(1))

[

‘O
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The practical use of the Bayes estimators P and 39

is limited by the fact that integration of functicns cf 8

9

involving FQ is required, and FQ is generally a guic

complicated functlion of 6. An alternative pair of estimatcers

R
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P and 8 can be derived by rerlacing F- in egquaticns (3, and
N 9% . 9%
\9) with the constant (over 3), F: Zirlting then Fi  as
iys- * v £ R 3
JusT a,, we have lie simplifled estimators,
- 1)
™ L/
? = 5(@[;< ) {o= Q*)
and
] [
P¥ - ) o¥E{PP_lZ ")
—~ ~ ;1 ‘: ~ J =
> = L2 : (10)
- S -
1 -} a¥*s,
5=1

3 b + 4 s - - b 2 P A =% 2o~ Ty e 2 o
teing analytically tractable in :terms of the 3ayesian =stimasicn
vs - 3 = 2 I [aa o ~ 2 o g S, S
gcrocecures aeve Lorvea in Section 4, WO Iami_les QI IJLl3TooluaTtllrs,

v = 4 o2 < s ~ -~ K] < N . - - T oer I~
each specilied by < parameters, immediately suggest tT.smse_ves

~

for this purpcse: the lognormal and the gamma. Thery zre ZIis-

wa_llz [1374.. A random variatle 7T is said to have a . twe-
carameter) lognormal distribution if the natural losgarizthm o
™ nas a normal distribution (see Aitchison and Brown
Thus the distribution of T 1is determined by the mean u and

2 2
variance ¢f ¢~ of the normal distribution. When ¢~ 1s small

“he distribution of T itself will be nct unlike that cf a

ncormal distribution. The gamma family specifies that the grci-

et o
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densizy function of T

would pe given by

aka--e-st

Bt
T(a)

& e
~mA v/

where a and B are positive parameters. Here again

ble tc fransform the randcm variable T to a very

I

approximation of normality for only moderately iarge a.

The Wilscn Eiiferty [1931] approximation can be used to show
/3, o
that 7T / nas approximately a ncrmal distribution with mean
1S3, . . z/
(a/8Y% -(1=-17%a) and variance (u/B)/'3/9a.

2 . R ~ K] < - -—

is mer2 rearly normal than tThe districution of _, 3C Zhat 2

- - E PO 2 - - - - e 4 -y 2 2 2 -— - -

_oTaricnomic transiormation To normality 1s ideal In the lognormal
J fond

v 4 = - < 2 - Al 4 <4 K 3 -

diztributicn case and helps in tne zamma distriputicn csse,

case,

Trom g striccly empirical viewroint It may te desirarzle <
ise the data to choose a Transformation to nermalicty from ameng
~ae power =ransformations consiijered by Box and Cox 193¢,

Thase include the cube rcot transfcrmasion; the logaricthmi

(9]

Thus we see tha<t it will

zenerally be possible to transform the walting time 3zta tc¢

gchieve

approximate normaliity.

Therefore we assume that It is possible to deal with trans-

formed values T of the original waliting times 7T, these trans-

formed values

oroblem

U having arproximate normal distrituticons. The

bl
[

on of waiz-

[N

stribtut

of statistical inference about the 4

i wimes <hen becomes one of inference atout the means and

variances of <he normal random variables .
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O. BAYES ESTIMATES OF THE WAITING TIME DISTRIBUTIONS

Suppcse that it is possible to transform the vector of

2
11 waitving times 7T (s x1) to a multivariate normal random

>
S™x1). We seek tc estimate the mean vector u

2 5 . 22, ~
(s“x1l) and the variance matrix § (s“xs®) cof

vecter

—_—

T
e

Assume that a rrior distributicon fer u and tine precisicn

-1
matrix R = ; ~ is chosen frcm the natural conjugate family
of normal-Wishart distributions. We then assume that the pricr

distribution has the following structure: The conditicnal dis-

ct
(92

ri is a nmultivariate normal

>
(s™x1) and precisicn matrix

ution of u given that R =

eHs

o

distribution with mean vector

3 i
Vo£6Q§>O)’ and the marginal distribution of R Is a Wisnarct
; . . 2 ; . ,
distribution wicth ao©b>s -1) degrees of freedom z2nd positive

e . . 2 2 . .
definite precision matrix 7 (s"xs”). Let SRR te a

random sample distributed like U.

Under these circumstances the essential basis fcr Inference

s contained in the following theoren.

[N

Theorem (See, =.gz., DeGroot (1970;p.17S5).)

The posterior joint distribution of p and 2R when

.,
o
]

=y, (i=1,...,n) 1is as follows: The ccndicional distribution
4

tC
[y

[S)
Y
=

when R = r 1s a multivariate normal distribution with mean

vector uland precision matrix (vl)r, where v1_=vo-+n and

+ T
L okt 07
~1 v

1

The marginal distribution of R 1is a Wishart distribution

with al:=ao-+n degrees of freedom and precision matrix Ty where




voh _ o
T]. = TO+ § + V—.l— (Eo-g)(yo—g) 4
and
n — P |
s = I (u,-U)(u,-0) .
i=1 "+ 7 T4 7

If we now define a multivariate quadratic loss function
of the form
L(B,E.) = (B‘;)'(E‘F):
we can obtain the Bayes estimator of u as the mean of the

posterior distribution of ¢, namely,

1)
[}

(5 =4

’_J

Alsc for a loss function of the form

L($,D) = tr(i-1)2,

the Rayes estimator for } is

¥ I
2

a+n-2(s"=-1)

(See, e.g., Press (1972;pp 168ff).).

7. BAYES ESTIMATES OF THE TRANSITION PROBABILITIES

We consider a Bayesian approach to estimation of the
transition probabilities P 1in the Markov renewal prccess.
Martin [13] developed a methodology for Bayesian inference
about the transition probabilities of a Markov chain. He noted
that in this case the observed transition counts in each row
of P come from a multinomial distribution with cell probabil-

~

ities depending in a particular way on 2. A matrix beta

12
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distribution 1is then postulated as appropriate for a prior

distribution. This is just the distribution of s 1ndependent
Dirichlet random vectors (see Johnson and Kotz (1972;p.233).
The matrix beta distribution i1s, like the Dirichlet, closed

under sampling so that the posterior distribution is also a

member of the matrix beta family.

Speciflcally, the matrix beta distribution is determined
by a matrix parameter M. If M, 1s taken to be the matrix
parameter specifying the prior distribution and a matrix of
frequency counts N 1is observed, then the posterior distri-
bution of P 1s matrix beta with matrix parameter M=M +N.
Under quadratic loss the Bayes estimator of P 1is then given
by the posterior expectation of g. But the expectaticn of
a random matrix P having a matrix beta distribution with

matrix parameter M=[m,. ] is simply,

m, .
EP = [—=] (11)
- ey -
s
where m = ¢ m,, (See Martin {1967; p. 17].)
i+ 3=1 1]

This same approach is followed by Brock [1971] for the Markov
renewal process when the walting time distribution are assumed

known.

For Bayesilan estimation 1in the general Markov renewal
process, we require, according to equation (10), two specific

conditional expectations, E(g]g(g)) and E(?px le(c)).
X
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The first conditional expectation is available directly from
equation (11). The second conditional expectation can be
ccmputed as follows: We basically require, for E having a
matrix beta distribution with matrix parameter M = [mru],
the expectation
E(?Pij) = [EPruPiJ]'
But
EPruPij = COV(Pru’Pij) + EPru EPij'
Now from Martin [1967;p.18] we have
MM
COV(PI"U’Pij) = - 4 “Jz » i=r,-j#u,
(m )" (my  +1)
m_ (m,,-m,.)
+ 1
i L T O E
(m, )" (my  +1)
= 0 , otherwise.
Therefore, making use of equation (11) and simplifying,
we have
m_ m
1= = ru i =
“(PruPiJ) ﬁ;:Tﬁi::TT , 1=r,Jj#u,
m_ (m,,+1)
- ._-I;u_.(__ij__T s i:r,J=u,
m m, +1
r+' i+ (12)
m_.m,,
= fu L] ifr.
m_.,m ’
r+ i+
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| |
i i
| Substituting the calculated values in equations (1l1l) and (12) % |
: into the estimator given in equaticn (10) we obtaln after
! i
} simplification, i
|
| . .
- = r#x
: ru M.+ ? n }
, (13) '
m f‘
=a 2% r=x_, ‘A
u m n .
r+
where f
m, ) m, u+1
1 - of —d % n ]
S m +1 m +1 s
JAu X + X _+
_ n n
a, = - 4
X, .
1 - ] o —— '
d 1
J X+

It 1s easy to verify directly that with the matrix beta

prior distribution either the Bayes estimates P or their
approximations f have row sums equal to one and have non-
negative entries. Hence either £ or T can be used as a

legitimate transition probability matrix.

8. A SIMULATION EXAMPLE

This section 1llustrates the application of the statistical

techniques developed in the previous section to simulated data.

The use of simulated data is advantageous at this point because
a direct comparison can be made between results based on esti-

mated process parameters and true process parameters.
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Data from a 3-state Markov renewal process with log-
normally distributed interarrival times were simulated on an
IBM 360/67 computer at Carnegie-Mellon University. The tran-

sition probabllity matrix was

3 .0 1
P = .2 5 3
1 .3 6

To give concreteness to this example, imagine that state
i=1,2,3 1indicates the number of projects that an analyst

has been assigned to work on simultaneously. Often when a
project is completed, 1t will be replaced immediately wi<th
another one. Hence there is high probability of an interstate
move. The analyst 1s never assigned more than three projects
and always is assigned at least one. The length of time a
project will take to complete 1is a random variable. % is pos-
sible to complete two projects simultaneously and two additicnal
projects might be assigned to the analyst currently working on
one. The 9 walting time distributions between transitions
are taken to be lognormally distributed. The means u and pre-
cislons 7T (reciprocal of the variances) of these distributions
are given, correspondingly to the entries cf P, as the first

line of each of 9 <cells in Table 1, below.

- =y -

et e




True Waiting Time Distribution Parameters

TABLE 1

(1, 1) (1, 1/4) (2, 1/9)
4.5 20.1 £65.1
2.7 2.7 7.b

(1, 1/9) (2,1) (2, 1/¥)

2447 12.2 54.6

2.7 7.4 7.4
(2, 1/79) (2, 1/9) (1,1)
665.1 665.1 4.2
7.4 7.4 2.7

Thus, for example, the logarithm of the time between a trans-
ition from state 2 to state 3 was normally distributed with a
mean of 2 and a standard deviation of 2. The exp=acted

interarrival times T <can be calculated from

= 1l
T = —
ET exp(u+ 5

and are gilven as the second line of each cell 1n Table I.
Since the lognormal distribution 1s skew the median interarrival
times exp (u) differ from the mean interarrival times and are
given as the third line of each cell in Table 1. In our illus-
tration, the units of T might be days.

The Bayes procedures outlined in the previous sections
require the specification of the parameters of the prior dis-

tributions. There are 9 walting time distributions, each of

17
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which requires that 4 parameters, v s and By =3 T

o

o’ 7o’ o
of the normal-gamma conjugate prior distribution be set.

We will illustrate the technique with independent and identical
prior distributions on all waiting time distributions. There
is, of course, no reason why this should necessarily be the
case in a practical application; we do this only for ease of
illustration. In order to give a reasonably diffuse prior

specification, while not being too far off from the target,

we choose our hyperparameters to be My T 1, Ao =1, @y = 1,
and B, = 4. This leads to prior (minimum mean squared error)
estimates (no-data) of the means and precisions of u = uy =1

and 7% = (aO/BO)-l = (1/4)7L. Prior estimated expected inter-

arrival times can then be calculated as

~

ET = exp(p+ ) = 20.086

N
I

and the estimated median waiting time would be

Note that these estimated means and medlans are not Bayes with
respect to squared error loss. They are only given to illustrate
thelr approximate magnitude, since our real concern is with
v and T-l. Naturally since the actual expected waiting times
vary substantially among themselves this estimate misses some
of the expected waiting times by a substantial margin.

To complete the specification of the prior parameters we
need to give the 3x3 matrix parameter MO of the matrix beta

distribution for the transition probability matrix P. We chccse

it

ittt

.
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5 3 2
M = ) 2
o)
2 3 5
which leads to prlor estimates of P as
5 .2 2

Note that i1t 1is not necessary for the row sums of go TO Dbe
10, they could be any positive number.

We now wish to show how these prior estimates will be
mcdified with data. Simulated data of 91 transitions (be-
ginning in state 1), together with their associated lognormally
distributed waliting times are used. The last state occuplied
was xn=2 and the cbserved time in this state before termina-
tion was w = 21.3. The stopping rule used was to stop when

the total observation time was 631.83. The "observed" transi-

tion counts, based on the simulation, are given by

[\V]

7 3
N=|7 20 13

n

iz 25
Thus the maximum likellhood estimate of the transition prcbabil-

ity matrix is

.167 .583 .2%0
175 .500 .325 | .
.051 .308 L6UY




Table 2 gives the maximum likelihood e

20

stimates of the

parameters of the lognormal distributions of waiting times.

The format of the table corresponds exactly
Thus the maximum likelihood estimate of the
for a transition from state 2 to state 3 is
comparison with Table 1 shows the true mean

be 54.6.

TABLE 2

Maximum Likelihood Estimates of the

to that of Table 1.
mean waliting time
538.215, while a

waliting time to

Waiting

Time Distribution Parameters

(1.401, 4.120) (-0.136, 0.505) (3.345, 0.390)
4.583 1.989 12,107.2
4.059 370 46.805

(1.774, 0.333) (2.013, 1.220) (2.25€, 0.124)

14.3930 11.278 538.213
5.394 7.436 ¢.345

(-0.04%, €.331) (1.696, 0.203) (1.07%, 0.573)

1.035 60.331 ¢.173
956 5.452 2.839%

Employment of the Bayesian methods discussed in Section ©

produced the estimates é of the parameters of the wailting

time distributions contalned in Table 3. Table 3 has the same

format at Tables 1 and 2. We have simply &

isglayed the




estimated exrected waiting times as exp(i + T™*) and the

PO

estimated median waiting times as exp (u), since our interest

centers on minimum mean squared error estimaticn of uw and .

TABLE 3

Bayes Estimates of the Waiting Time

istribucticn Parameters

f (1.267, .4685) (.003, .435) (3.135, .105)
s oz - P
| 10.39¢ .71 2,£831.507 |
| 3.531 1.003 32,977 :
. : B
Il ' '
o e . . ' , . RN
(1.677, .513) (1.9¢65, .:z67) {2..53, S :
i
1TLTa2 12,737 150,021 ?
- -7 {
! - . - . I i
| . 381 1=:3 ' z o] ]
'
(.303, .u82) (1.642, .212) (1.973, 3887 |
4.13% 34,840 T ‘
+
1.354 5,163 2.930 |
i

Comparison cf Tables I, ¢, and 3 plus the grior estimates
shows that (1) the posterior Bayes estimates effectively
restrain the rather extreme fluctuation that afflict these
small sample maximum likelihood estimates, and (2) the pcsterior
Bayes estimates are overall slightly better than both the prior
Bayes estimates and the maximum llkelihood estimates.

Ignoring the observed terminal waiting time in state 2 of

w = 21.3, the estimated transiticn probabllity matrix is

At e B

ol 1z 2l
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Incorporating the otserved terminal waiting time according

ird

regquires that we calculate

9 c v 5 . . .
F3,.21.3) fer §=1,2,3 to incorporate in the estimator given
by ecuation (13). These calculated values are

Fiy T .833, F22 = .347, and FE? = .C03%,

and hence the estimate ¢ 1is

S 227
= 1 “mn — - e |
ro= RDRARS .o10 205 .
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This compares favorably wich the maximum likelinhccd

and the prior estimates.

e
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